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Generalized Number Theoretic Spin Chain-Connections
to Dynamical Systems and Expectation Values
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We generalize the number theoretic spin chain, a one-dimensional statistical
model based on the Farey fractions, by introducing a parameter x � 0. This
allows us to write recursion relations in the length of the chain. These rela-
tions are closely related to the Lewis three-term equation, which is useful in
the study of the Selberg ζ -function. We then make use of these relations and
spin orientation transformations. We find a simple connection with the trans-
fer operator of a model of intermittency in dynamical systems. In addition, we
are able to calculate certain spin expectation values explicitly in terms of the
free energy or correlation length. Some of these expectation values appear to
be directly connected with the mechanism of the phase transition.

KEY WORDS: expectation values; Farey fractions; dynamical systems; spin chain;
intermittency.

1. INTRODUCTION

In this paper, following a suggestion of Zagier,(1) we generalize the “num-
ber theoretic” partition function, whose statistical mechanical proper-
ties have been studied by Knauf and collaborators,(2–5) by introducing
a parameter x ∈ R

+
0 . Both the “canonical” and “grand canonical” parti-

tion functions of Knauf arise, for certain values of x. More generally, as
explained in Section 2, these models may be regarded as one-dimensional
spin chains of length k, and the parameter x allows us to derive recursion
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relations on the length of the spin chain. These relations are simple gen-
eralizations of the Lewis three-term equation that has been extensively
studied in number theory.(6,7) Next, Section 3 explores some simple con-
sequences of spin orientation (“spin flip”) transformations for partition
functions and expectation values. These results, along with the recursion
relations, are our main tools. They are used, in various ways, in the suc-
ceeding sections. In Section 4, the recursion relations are shown to imply
a very simple and direct connection between the transfer operator stud-
ied by Prellberg(8–10) (see also ref. 11) in a model of dynamical systems
with intermittency and the generalized partition function. This is one of
our main results. We examine some of its consequences. In particular, we
prove that all models have the same free energy, independent of the value
of x, and show that the known spectrum of the transfer operator implies
that the correlation length satisfies the prediction of scaling theory. In Sec-
tions 5 and 6, we use the recursion relations and spin-flip behavior to
calculate certain spin expectation values for both finite and infinite spin
chains. Unfortunately, our methods are not sufficient to calculate an arbi-
trary expectation value. However, some new and interesting features arise.
In particular, the expectation value of certain spin clusters and an inde-
pendent spin at arbitrary distance is shown to be independent of the direc-
tion of the spin, at all temperatures above the transition. Thus, in this
sense, the spin cluster removes the spin asymmetry of the system. This
behavior appears to be related to the mechanism of the phase transition.

The recursion relations derived here first appeared in the literature, albeit
in a combinatorial form, in ref. 3 where they were used to study the phase
transition of the model. In addition, they were exploited in the form of subad-
ditivity to give a very elegant proof of the thermodynamic limit in ref. 12.

The models studied here, as well as the closely related model of,(13)

are of interest both from the point of view of statistical mechanics and of
number theory. The phase transition that they exhibit is rather unusual,
being on the border between first- and second-order (see refs. 14, 15
for details). On the other hand, they have led to some new results in
the theory of quadratic forms.(16–18) In addition, there is as mentioned
(and explained below) a connection to dynamical systems. Indeed, chaotic
behavior is exhibited by certain statistical quantities. In particular, ref. 17
proves that the “density of states” for the infinite chain of the model of
ref. 13 does not exist—it is a distribution.

All of our results are rigorous. Since they concern certain weighted
averages over the Farey fractions (modified Farey sequence) and relate to
the Lewis equation, they may be of interest to mathematicians. Therefore
we have included a few explanations and definitions in an attempt to make
the paper more accessible to those unfamiliar with statistical mechanics.
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2. DEFINITION OF THE PARTITION FUNCTION

In this section we define the generalized partition function, and show
that it satisfies a recursion relation. This relation is one of our main tools
for proving new results.

Let the matrix Mk be any product of k matrices A0 :=
(

1
1

0
1

)
and A1 :=(

1
0

1
1

)
,

Mk =
(

a b

c d

)
.

We can regard any such product as a one-dimensional chain of length k.
If the ith matrix (1 � i � k) is A0 we identify it as a spin pointing up at
the ith site in the chain, and likewise as a spin pointing down if it is A1.
Therefore each matrix Mk corresponds to a definite configuration of the k

spins.
Next we extend the Knauf model(4) (see also ref. 13 and (7)) by intro-

ducing a family of partition functions parametrized by the variable x �0(1)

Z̃k(x, β) :=
∑

(cx +d)−2β, (1)

where the sum runs over all 2k permutations of the product of the k matri-
ces A0, A1.

Next, setting Mk+1 =MkA0 or Mk+1 =MkA1 gives rise to a chain of
length k + 1. Now since MkA0 =

(
a+b
c+d

b
d

)
and MkA1 =

(
a
c

a+b
c+d

)
, we find

from (1) the recursion relation

Z̃k+1(x, β)= (1+x)−2βZ̃k

(
x

1+x
,β

)
+ Z̃k(x +1, β) (2)

with the initial condition Z̃0(x, β)≡ 1
(

i.e. M0 =
(

1
0

0
1

))
. The variable x ∈

R
+
0 is a parameter which changes the energy (Ek = 2 ln(cx + d)) of each

spin configuration (i.e. each matrix product Mk) and β ∈R
+
0 is the inverse

temperature. However, the free energy is independent of x, as we will see.
Note that the rhs of (2) is exactly the Ruelle–Perron–Frobenius oper-

ator of the one-dimensional iterated map on the positive reals of the form
f (x) = x/(1 − x) for x < 1 and f (x) = x − 1 for x > 1 (see (23) and (24)
below for details on how to verify this), establishing a connection with
dynamical systems. We will make extensive use of another, similar connec-
tion to the Farey map in Section 4.
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It is convenient to define, as in number theory,(19) the action of the
matrix M =

(
a
c

b
d

)
on any function f (x)

f (x)|M := (cx +d)−2βf

(
ax +b

cx +d

)
. (3)

For example, consider the action of the matrix A0 on the constant func-
tion

1(x)|A0 = (1+x)−2β, (4)

where 1(x)≡1.
It is easy to check that our partition function Z̃k(x, β) can be written

as

Z̃k(x, β)=
2k∑

i=1

1(x)|Mi, (5)

where Mi = ∏k
j=1 Aτj (i) with τj (i) ∈ {0,1}. Note that each Mi defines

fractions a
b

and c
d

at level k of the Stern–Brocot tree;(20) thus the level
corresponds to the length of the spin chain. The subset of these frac-
tions between zero and one are called Farey fractions (or modified Farey
sequence). They are generated by the products which start with A0.(13)

In the following, we make extensive use of an abbreviated form of (5)

Z̃k(x, β)=1(x)|(A0 +A1)
k =1(x)|A0(A0 +A1)

k−1 +1(x)|A1(A0 +A1)
k−1,

(6)

where the addition must be applied after the multiplication of the matri-
ces!

The Knauf “canonical” partition function ZK
k (s) (see ref. 4 for the

definition and note that s =2β) is equal to

ZK
k (2β)=1(x)|A0(A0 +A1)

k|x=0. (7)

Similarly, the “grand canonical” partition function of Knauf(2) corre-
sponds to (7) with x =1 on the right hand side.

Let

Zk(x,β) :=1(x)|A0(A0 +A1)
k. (8)
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(8) is then a direct generalization of ZK
k . It is easy to verify that (8) satis-

fies the recursion relation (2). Using 1(x)|A1 =1(x) and (6) we get

Z̃k(x, β)=Zk−1(x, β)+1(x)|A1(A0 +A1)
k−1 =1+

k−1∑
i=0

Zi(x, β). (9)

Thus (9) relates two partition functions satisfying the recursion formula (2)
with initial conditions Z0(x, β)= (1+x)−2β and Z̃0(x, β)=1(x).

In the following, we use Zk(x,β) exclusively, because of its direct
relation to previously studied spin chains. It is possible to obtain similar
results for Z̃k(x, β) as well. We show in Section 4 that all of the partition
functions (8) have the same free energy, independent of x (for the defini-
tion of free energy, cf. (36)).

For use below, we note that it is straightforward to express Zk(x,β)

similarly to Z̃k(x, β) in (1) by

Zk(x,β)=
∑

((a + c)x + (b+d))−2β, (10)

where a, b, c, d now correspond to the matrix elements of Mk−1. Note,
however, that (see (7)) Mk is now always of the form A0Mk−1. Thus, set-
ting x = 0 (the “canonical” case), one sums over all Farey denominators,
given here by b+d, at level k. Letting x =1 to obtain the “grand canoni-
cal” partition function thus corresponds to summing only over the “new”
denominators (a + c+b+d) at the next level. Now the Farey fractions at
each level k are composed of “old” fractions that arose at lower levels and
“new” ones from level k. Thus the “canonical” partition function at level
k can be written as a sum over “grand canonical” partition functions at
lower levels, i. e. over all “grand canonical” chains of shorter length. This
is the opposite of the usual situation in statistical mechanics, and the rea-
son why we put the names in quotes.

3. SPIN ORIENTATION TRANSFORMATIONS

In this section we consider the consequences of the spin-flip transfor-
mation generated by the matrix P =

(
0
1

1
0

)
. Specifically, we investigate the

effects of P on the partition function Zk(x,β) and some related functions
useful in calculation expectation values.

The action of P on a function f (x) is

f (x)|P =x−2βf (1/x). (11)
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Note that the matrix P simply exchanges the spin orientation, e.g. the
matrix A0 and the matrix A1 satisfy

A1 =P A0 P. (12)

Since P 2 = 1, (12) in fact implies that A0 and A1 are conjugate. Note
that a function f (x) satisfying (11) (i.e. f (x)=x−2βf (1/x)) can be called
even, since, using the substitution ey =x (recall that x �0 herein) to define
g(y)= eβyf (ey), (11) becomes g(y)=g(−y).

Now our initial condition Z0(x, β) = (1 + x)−2β is easily seen to be
even. Consequently, for all k �1, x ∈R

+ and β ∈R
+
0 the partition function

Zk(x) is even

Zk(x)|P=(1+x)−2β |(A0 +A1)
kP=(1+x)−2β |P 2(A0+A1)

kP=Zk(x).

(13)

In the last equality we used the evenness of our initial condition and the
fact that the set of all terms in (A0 +A1)

k is the same as the set P(A0 +
A1)

kP . Note also that (9) implies that the partition function Z̃k(x, β) is
“almost” even for β <βc and k →∞, since both Z̃k(x, β)−1 and Z̃k(x, β)

diverge in this limit, and the former is even. Finally, (11) and (13) show
that Zk(1), the “grand canonical” partition function, is actually invari-
ant under the spin-flip transformation. This corresponds to the absence of
odd-spin interactions in this model, as will be discussed below.

Now consider the terms in (2). Using the evenness of our parti-
tion function we can write Zk−1(x)|A0 = Zk−1(x)|P A0 and Zk−1(x)|A1 =
Zk−1(x)|P A1. Thus

(1+x)−2βZk−1

(
x

1+x
,β

)
=x−2βZk−1

(
1+x

x
,β

)
(14)

and

Zk−1(x +1, β)= (1+x)−2βZk−1

(
1

1+x
,β

)
(15)

for all k � 1, x ∈ R
+ and β ∈ R

+
0 . Combining (2), (14) and (15) (which,

as mentioned, also holds for Zk(x,β)) gives us four different possible
recursion formulas. For instance

Zk(x)= (x +1)−2β

[
Zk−1

(
x

x +1

)
+Zk−1

(
1

x +1

)]
(16)
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which we will use in Section 4.
In addition we can see that the matrix P can be put in front of any

matrix A0 or A1 in the expression (1 + x)−2β |(A0 + A1)
k without chang-

ing the partition function Zk(x) (for example (1+x)−2β |(A0 +A1)
l(P A0 +

A1)(A0 +A1)
r = (1+x)−2β |(A0 +A1)

k for any k, l, r �0 such that l+r +1=
k). On the other hand if we put the matrix P after any matrix A0 or A1
we get a new function. Let

Zl↑r

k (x)= 1
2
(1+x)−2β |(A0 +A1)

l(A0 +A1P)(A0 +A1)
r (17)

and

Zl↓r

k (x)= 1
2
(1+x)−2β |(A0 +A1)

l(A0P +A1)(A0 +A1)
r , (18)

with l + r +1=k. Using (12) we then have

Zl↑r

k (x)=Zl(x)|A0(A0 +A1)
r (19)

and

Zl↓r

k (x)=Zl(x)|A1(A0 +A1)
r . (20)

The arrows ↑ and ↓ refer to the interpretation of A0 and A1, as up and
down spins, respectively. Thus (19) and (20) motivate the notation in (17)
and (18). In addition note that

Zl↑r

k (x)+Zl↓r

k (x)=Zk(x). (21)

We will make use of these functions to calculate expectation values in Sec-
tion 5.

Note that, as is often done in statistical mechanics, if we fix the spin
at one position (or spins at several positions) and sum over the rest, as
in (19) or (20), and then divide by the partition function, the result is
an expectation value, since the ratio is the sum of the probabilities of all
configurations with this spin (or these spins) fixed in the way specified.
This follows because each term in the partition function is the unnor-
malized probability of the corresponding spin configuration. In statistical
mechanics, expectation values involving more than one spin are sometimes
referred to as “correlations” or “correlation functions”, especially when
one focuses on their dependence on the distance(s) between the spins.
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We conclude with an observation which follows immediately from (19)
and (20). The probability of a spin up at position l + 1 from the left is
equal to the probability of a spin down at the same position for a model
with different x. It is easy to see that

Zl↑r

k (x)

Zk(x)
= Zl↓r

k (x)|P
Zk(x)

= x−2βZl↓r

k (1/x)

Zk(x)|P = Zl↓r

k (1/x)

Zk(1/x)
(22)

for all k�1, x ∈R
+ and β ∈R

+
0 . Note that for x =1 these probabilities are

equal. For other values of x, since the magnetization (which is essentially
the probability of spin up minus the probability of spin down) is zero, the
up and down spins probabilities become equal when l and r are sent to
infinity (see Section 5).

4. CONNECTION TO THE TRANSFER OPERATOR

In this section we demonstrate a direct and simple connection between
the partition function Zk(x,β) and a transfer operator for a model of
intermittency in dynamical systems associated with the Farey fractions.
This connection had already been noticed in ref. 4, but in a less direct
setting. Our new result allows us to prove that the free energy (cf. (33)),
which is given by the largest eigenvalue of the operator, is independent
of x, and draw other conclusions as well. In particular, the spectrum of
this operator has been determined by Prellberg,(9) and it follows from his
results that there is a second-order phase transition for all x.

To begin, consider the Farey tree, which is generated by the Farey
map acting on the unit interval [0,1], or more precisely, on the point x =
1/2. It consists, at each level, of a subset of the Farey fractions. (For more
details on these matters, see refs. 21 and 14). The Farey map is defined as

f (x)=
{

f0(x)=x/(1−x) , if 0�x �1/2,
f1(x)= (1−x)/x , if 1/2<x �1 . (23)

We denote the inverses by F0(x) = f0
−1(x) = x/(1 + x) and F1(x) =

f1
−1(x)=1/(1+x). The associated Ruelle–Perron–Frobenius transfer oper-

ator is then formally given by (note the resemblance to (16))

Kβ φ(x) = |F0
′(x)|βφ(F0(x))+|F1

′(x)|βφ(F1(x))

= 1
(1+x)2β

[
φ

(
x

1+x

)
+φ

(
1

1+x

)]
. (24)
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Therefore, the k-fold iterated operator Kk
β ϕ(x) consists of 2k terms of the

form

|(Fτ1 ◦Fτ2 ◦ · · · ◦Fτk
)′(x)|βϕ(Fτ1 ◦Fτ2 ◦ · · · ◦Fτk

(x)) (25)

with τj ∈ {0,1}. As we are dealing with iterations of Möbius transforma-
tions of the form ax+b

cx+d
with determinant ±1, we can alternatively consider

multiplication of the associated matrices. We find for instance

Kk
β1(x)=

∑
{τj }

(cx +d)
−2β
{τj } =

2k∑
i=1

1(x)|M̃i, (26)

where c and d are just the bottom left and right entries, respectively, of
the matrix

M̃i =
k∏

j=1

Fτj (i) where F0 =
(

1 0
1 1

)
and F1 =

(
0 1
1 1

)
. (27)

Note that A0 =F0 and F1 =PA1.
When we apply Kβ to the constant function 1(x) we obtain 2(1 +

x)−2β . That is exactly twice the initial condition of the partition function
Zk(x) (see (8)). In addition Kβ increases the level k of the partition func-
tion Zk(x) by one as follows from (16) and (24). Thus

Kk
β1(x)=2Zk−1(x). (28)

(28) is one of our main results. A connection of this type follows from refs.
3 and 4, but it is less direct, and not valid for all x values. Next, we con-
sider some of the consequences of (28).

First, we note that for x =0, (28) connects the Knauf model (7) and
the transfer operator Kβ :

Kk
β1(x)|x=0 =2 ZK

k−1(2β). (29)

Now ref. 4 defines an operator C̃(2β) whose non-degenerate leading eigen-
value λ(β) gives the free energy of the “grand canonical” partition func-
tion Zk(x =1, β) and the “canonical” case Zk(x =0, β) as in (36) below. It
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also connects the largest eigenvalue of C̃(2β) with the largest eigenvalue of
the equation

λ(β)f (x)=f (x +1)+x−2βf (1+1/x), (30)

which is directly related to (24). In fact the proof uses a Taylor series
expansion of φ(x) (in (24)) at x = 1. However, the connection of the par-
tition functions and (24) or (30) in ref. 4 is not so direct.

A connection between the leading eigenvalue of the operator C̃(2β)

and the spectrum of Kβ is made in ref. 14 by use of the isomorphism
between the function spaces l2 and L2. Except for the heuristic remarks
below on verifying scaling theory, this is all that is required here. In order
to go further, one must consider the rest of the spectrum of Kβ , which
depends on the choice of function space (see refs. 11,12). Then the situ-
ation is complicated (in part because the known spectrum, determined in
ref. 9, is on a space of certain analytic functions), and not germane to our
main purpose here, and so is not included.

Next consider (29) for β >βc =1. In that case, one has

lim
k→∞

Kk
β1(x)|x=0 = lim

k→∞
2 ZK

k−1(2β)=2
ζ(2β −1)

ζ(2β)
, (31)

where ζ is the Riemann zeta-function (the second equality is shown in ref.
2). This result has not appeared previously, to our knowledge.

For β < βc = 1, the leading eigenvalue λ(β) > 1 of Kβ
(9) is, as men-

tioned, the same as the leading eigenvalue of C̃(2β). For use below, we
define a(x,β) as

a(x,β)= lim
k→∞

Zk(x,β)

λk(β)
. (32)

Next we establish the existence of a(x,β). Note that this is a stronger con-
dition than the existence of the free energy. (In fact, a(1, β) has already
been shown to exist in ref. 3—see their equation (20) in the proof of
Lemma 8.) For 0 � x � 1 the existence we desire follows from the results
in ref. 14. Equation (26) in that paper demonstrates that (32) holds in
general for 0 � x � 1 but with φ

(β)
k in place of Zk(x,β). To complete the

argument, we show that the initial vector of (26) corresponds to the ini-
tial vector used here. Letting the function Kβ1(x)=2/(1+x)2β =2Z0(x, β)

be the initial vector, it is straightforward to verify that the corresponding



Dynamical Systems and Expectation Values 563

initial vector in l2, on which C̃T (2β) operates, is exactly X0(2β) (see Sec-
tions 4 and 5 in ref. 14 for more details). This establishes (32) for 0�x �1.
Since Zk(x,β) is even for each k, (32) then follows simply for x >1.

Since Zk(x,β) is a decreasing function of x, it follows from the defi-
nition that a(x,β) is a non-increasing function of x.

Note that since the spectrum of Kβ is independent of x, the free
energy

f (β) := −1
β

lim
k→∞

ln Zk(x,β)

k
= −1

β
ln λ(β) (33)

depends only on the inverse temperature β.(4,14) Thus (as we have already
noted for x =0 in ref. 14) the phase transition is second-order for all x �0.
This follows from the result of Prellberg,(8,10)

ln λ(β)= c
β −1

ln(1−β)
[1+o(1)], β →1−, (34)

where c>0 (for more discussion about the phase transition see ref. 14).
Now since all terms in Zk(x,β) are positive, and the matrix Ak+1

0 is
included (see (8)), one has (recall that x �0)

(1+ (k +1)x)−2β �Zk(x,β)�Zk(0, β)=ZK
k (2β). (35)

Thus, since the Knauf free energy vanishes for β � βc, so must the free
energy obtained from Zk(x,β). Furthermore, assuming that the results of
ref. 9 apply, the essential spectral radius of Kβ is one for all β �βc. Thus
we can define λ(β)=1 in this temperature range and write for all temper-
atures

f (x,β)= −1
β

ln λ(β). (36)

We have shown elsewhere(14) that the free energy of the Knauf model,
the Farey tree model(21) and the Farey fraction spin chain of Kleban and
Özlük(13) are the same for all temperatures and are also given by (36).

Note that λ(β) changes its character at the critical point. Above the
critical temperature it belongs to a discrete spectrum and below the criti-
cal temperature it is the upper limit of the continuous spectrum.

The upper limit of the continuous spectrum is equal to one for β �βc,
and the only larger contribution to the spectrum is λ(β). This is consistent
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with our previous results in ref. 15 based on scaling and renormalization
group arguments. For a one-dimensional system the scaling arguments
provide the relation between the singular part of free energy fs and cor-
relation length ξ

fs ∝ 1
ξ
. (37)

(The correlation length is essentially the distance over which the spin–
spin correlation function varies, i. e. is not constant.) If the spectrum were
purely discrete, our partition function would go as

Zk(x,β)=λka(x)+λk
1a1(x)+· · · . (38)

Hence, using (33),

fs ∝ ln λ. (39)

The definition of the correlation length would give

ξ = C

ln(λ/λ1)
(40)

where C is a positive constant. This implies that λ1(β)=1 for β �βc, con-
sistent with Prellberg’s results.

In addition, note that from (32) and the evenness of Zk, it follows
that the eigenfunction a(x,β) is even

a(x,β)=x−2βa(1/x,β). (41)

Using this fact and (24) we can write

λ(β)a(x, β)=a(x +1, β)+ (1+x)−2βa

(
x

x +1
, β

)
. (42)

Note that, as remarked in ref. 4 (and using the evenness of a(x,β)), (42) is
a generalization of the Lewis three-term equation, which has been exten-
sively studied in number theory in the context of the Selberg ζ -function
(refs. 6, 7). In the Lewis case, solutions with λ= 1 are of interest, and β

may be complex.
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Applying (41) and (42) with x =0 and x =1 we obtain

a(1, β)= (λ(β)−1)a(0, β), (43)

and

a(2, β)= λ(β)

2
a(1, β)= λ(β)

2
(λ(β)−1)a(0, β), (44)

respectively. We will make extensive use of (43) and (44) below.

5. EXPECTATION VALUES-PRELIMINARIES

In this section we consider various spin expectation values for Knauf
spin chains. (The remarks just below (21) define these quantities.) Mak-
ing use of the spin flip behavior and recursion relations proved above,
we obtain a few results, but our main purpose is to set the stage for the
expectation value calculations of the next section.

First, consider the expectation value for spin up

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
r

〉x := Zl↑r

k (x)

Zk(x)
, (45)

and similarly for spin down. By using (13), (19) and (21) we find

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
r

〉x = Zl(x)|A0(A0 +A1)
r

Zl(x)|A0(A0 +A1)
r +Zl(x)|A0(A0 +A1)

rP
. (46)

We now relate the two terms in the denominator, at least for some val-
ues of x. We already know from (22) that for x =1 these terms are equal.
There is a simple explanation for this. Multiplying any matrix Mi by P

on the right just exchanges its columns, and (10) is clearly invariant under
exchange of columns for x = 1. Thus the probability to find spin up (or
down) at any location on the spin chain with x =1 is

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
r

〉x=1 =〈 . . .︸︷︷︸
l

↓ . . .︸︷︷︸
r

〉x=1 = 1
2

· (47)

Thus, in this case, due to the spin-flip symmetry, there are no finite size or
edge effects at all (the result is valid for all l, r �0). The situation is very
different for x =0, as we will see.
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Although our spin chains are defined in terms of matrices, one can
also investigate their Hamiltonians. Generally, these are not very useful,
since they include long-range many-body interactions between the spins
(see refs. (2) or (13) for definitions and explanations of these matters).
However, it is known that for the “grand canonical” spin chain, all inter-
actions are even and ferromagnetic (i. e. favoring aligned spins).(2) There-
fore any expectation value involving an odd number of spins must vanish.
Since x =1 corresponds to this spin chain, (47) is exactly what one expects.

Now consider x =0 (the Knauf model of (7)). The partition function
at level k is

Zk(0) = (Zl(x)|A0(A0 +A1)
r +Zl(x)|A0(A0 +A1)

rP )|x=0

= 2Zl↑r

k (0)+Zl(1)−Zl(0). (48)

This result may be proven directly from the structure of the Farey frac-
tions together with the action of the matrix P . However, we will show
it by using (19) and (20). First, note that Zl↑0

k−r (0) = Zl(0) and Zl↓0
k−r (0) =

Zl(1). Next, express (19) as

Zl↑r

k (x)= (1+x)−2βZl↑r−1
k−1

(
x

1+x

)
+Zl↑r−1

k−1 (x +1). (49)

Now for x =0 (49) becomes

Zl↑r

k (0)=Zl(0)+
k−1∑

i=l+1

Zl↑i−l−1
i (1). (50)

Similarly we find

Zl↓r

k (0)=Zl(1)+
k−1∑

i=l+1

Zl↓i−l−1
i (1). (51)

Adding the above expressions (see(21)) and using the fact that Zl↑r

k (1) =
Zl↓r

k (1) (see (22)) leads to (48).
By making use of (46) and (48), the expectation value for spin up at

x =0 can be written as

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
r

〉x=0 = 1
2−K

, (52)
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where

K = Zl(0)−Zl(1)

Zl(x)|A0(A0 +A1)
r |x=0

. (53)

Now Zl(x)|A0(A0 + A1)
r |x=0 � Zl(0) > Zl(1) > 0 for all l, r � 0 and β >

0. The first inequality follows immediately from the fact that the sum
Zl(x)|A0(A0+A1)

r|x=0 of positive terms includes the term Zl(x)|Ar+1
0 |x=0 =

Zl(0). The second inequality follows directly from the monotonicity (in x)
of Zl(x). Therefore 0 �K � 1, where K = 0 can occur if the denominator
of (53) diverges. (This happens when r →∞, see (66) below.) Thus the spin
at any position for temperature T <∞ has, in general, greater probability
to be up than down

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
r

〉x=0 � 〈 . . .︸︷︷︸
l

↓ . . .︸︷︷︸
r

〉x=0, (54)

where it should be realized that equality only holds in the special case
K =0.

In the “normal” situation, i. e. when equality does not hold, (54) may
be regarded as an effect of the “hidden” spin up on the left, i.e. the initial
condition (1+x)−2β =1(x)|A0, which breaks spin-flip symmetry. A slightly
different point of view involves the spin interactions. For x = 0, i.e. the
(canonical) Knauf model, these are all ferromagnetic and include terms
with an odd number of spins.(2,5) Equation (54) shows that the odd inter-
actons can be sufficient to favor an up spin. The interactions also give rise
to some rather subtle effects in certain other expectation values, as we will
see below.

Now we consider the two-spin correlation function. Let

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
r

〉x = Zl↑n

k (x)|A0(A0 +A1)
r

Zk+r+1(x)
, (55)

where as before k = l +n+1.
The partition function Zk+r+1(x) for a spin chain of length l +n+ r +

2 can be divided into four terms (corresponding to the four possible con-
figurations of two spins)

Zl↑n

k (x)|Ai(A0 +A1)
r
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and
Zl↓n

k (x)|Ai(A0 +A1)
r

where i ∈{0,1}. Using the matrix P (see (22)) gives

Zl↑n

k (x)|Ai(A0 +A1)
r =Zl↓n

k (x)|Ai+1(mod 2)(A0 +A1)
rP . (56)

Now (47) shows that for x =1 each spin has equal probability to be up or
down without any edge or finite size effects (i.e. for any l, r ∈ Z

+
0 ). Thus

we can expect that e.g. the expectation value for two spins up is the same
as for two spins down. In fact (55) and (56) give immediately

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
r

〉x=1 =〈 . . .︸︷︷︸
l

↓ . . .︸︷︷︸
n

↓ . . .︸︷︷︸
r

〉x=1 (57)

and

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
n

↓ . . .︸︷︷︸
r

〉x=1 =〈 . . .︸︷︷︸
l

↓ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
r

〉x=1 (58)

where l, n, r ∈Z
+
0 .

In the case of one spin (47) shows that the expectation value does not
change under translation of the spin. The two spin expectation value is
not translationally invariant but it does have the following symmetry

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
n

↓ . . .︸︷︷︸
r

〉x=1 =〈 . . .︸︷︷︸
r

↓ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
l

〉x=1. (59)

This follows on rewriting the l. h. s. of (59) as

Zl↑n

k (x)|A1(A0 +A1)
r

= (1+x)−2β |(A0 +A1)
lA0(A0 +A1)

nA1(A0 +A1)
r

=
2l+n+r∑
i=1

[(a + c)x +b+d]−2β
i , (60)

where a, b, c, d are entries of the ith matrix from the set (A0 +
A1)

lA0(A0 + A1)
nA1(A0 + A1)

r . Thus for x = 1 the sum does not change
under matrix transposition and we get (59). This result also follows from
the proof that the interactions in the “grand canonical” spin chain also
have the symmetry (59) (Lemma 4.8 in ref. 2).
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6. EXPECTATION VALUES-RESULTS

In this section we calculate several spin expectation values for Knauf
spin chains. These results are all new, and are the first calculations of such
quantities, to our knowledge. We find that they are expressed as simple
functions of the free energy f (or correlation length ξ ).

The methods used in the previous section (and this one as well!) are
only of use when one can come up with a finite, closed set of equations.
For the expectation value of a general set of spins, this is not the case.
Since the matrices representing the spins operate “from the right” most of
our results are expectation values involving a finite number of spins fixed
at or at a finite distance from the right hand side of the spin chain.

First note that by (47), at x = 1, the spin expectation value has no
edge or finite size effects. Thus, allowing l → ∞ and r → ∞, a spin up
(down) still has probability one half. By contrast, (52) shows that there
may be such effects for x = 0. This indeed occurs, as we now proceed to
demonstrate.

In order to see the edge effect at the right side of an infinitely long
chain we go back to (48) and let l →∞. Using (32) and the properties of
the eigenfunction a(x) we get

λr+1a(0)=2 a(x)|A0(A0 +A1)
r |x=0 +a(1)−a(0) (61)

for all r �0. Thus, we can write the expectation value for a spin r +1 from
the right of the infinitely long chain using (43)

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
r

〉x=0 = 1
2

(
1+ 2−λ

λr+1

)
, (62)

where the eigenvalue λ(β)∈ (1,2] for β ∈ [0, βc). Note that a similar expres-
sion for the spin down expectation value follows since their sum must be
one.

Now recall (see (36)) that λ is given directly in terms of the free
energy via λ = e−βf . The free energy is a non-increasing function of the
temperature for β �βc. Hence, for any fixed r, the expectation value (62)
decreases monotonically to 1/2 as T → ∞. In fact, all our results are
consistent with a product distribution in this limit, i. e. the probability
of a given spin being up or down is 1/2. Note also that λ may also be
expressed in terms of the correlation length ξ (see (40) and recall that
λ1 =1 for β �βc).
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From a physical point of view, it is also interesting to compare (62)
and (54), which, as mentioned, may be attributed to long-range interac-
tions between an odd number of spins. (62) shows that their effects are felt
even infinitely far from the initial (“hidden”) up spin. This is particularly
interesting, since ref. [2] proves that even though there are odd (ferromag-
netic) interactions at x =0, any individual interaction term vanishes in the
limit of an infinitely long chain. Thus (62) shows that certain cumulative
effects of the odd interactions remain in this limit, even though each indi-
vidual interaction goes to zero.

It is also of note that (62), as well as various expressions that we will
derive shortly, give expectation values as simple polynomials in λ, which
is itself exponential in the free energy f or correlation length ξ , as men-
tioned.

We can use (62) at the critical temperature (where λ(βc)= 1) by tak-
ing the limit β →βc. Then the probability of a spin up is 1 for any finite
distance r from the right (this can also be shown directly from (52) since
K → 1 when β →βc and then l →∞). On the other hand for any β <βc

the spin up (or down!) probability goes to one half as r →∞.
Note that (62) also gives the right edge correlation length ξr as

ξr = 1
ln λ

= 1
fs

. (63)

This equation directly relates edge and bulk behavior. Since the bulk cor-
relation length ξ ∝ 1

fs
(see (ref. 15)),

ξr ∝ ξ ∝ ln ε

ε
(64)

as β →βc, where ε = βc

β
−1.

Now consider the limit r → ∞, keeping l finite. Using (48) we can
write

lim
r→∞

Zl(x)|A0(A0 +A1)
r |x=0

λr
= λl+1

2
a(0) (65)

for any λ> 1 (i.e. β <βc). From ((79) below we see that 0 <a(0)<∞ for
λ∈ (1,2]. Using (52) and (65) we then obtain

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
∞

〉x=0 = 1
2

(66)
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for all l�0 and β <βc. Thus the left edge effects on one spin vanish. From
a physical point of view, this is quite interesting. The “hidden” spin up on
the left, or equivalently the long-range odd ferromagnetic interactions(2)

have no effect in an infinite chain when the spin in question is only a finite
distance from the “hidden” spin. By contrast, when it is infinitely far away
but at a finite distance from the right edge, there is an effect (see (62)).
However, we will see that this effect is removed if one fixes spins on the
right hand end of the chain in certain specific configurations.

Next we consider the two spin correlation function, in the limit where
the left part of the spin chain goes to infinity. Using (19), (32) and (55) we
find

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
r

〉x = a(x)|A0(A0 +A1)
nA0(A0 +A1)

r

λn+r+2a(x)
. (67)

It is convenient to define two functions of x and β (where, as for a(x), we
do not explicitly indicate the β dependence),

Un(x)=a(x)|A0(A0 +A1)
n (68)

for spin up and similarly for spin down

Dn(x)=a(x)|A1(A0 +A1)
n. (69)

Clearly for all n�0 and 0�β <βc =1

Un(x)+Dn(x)=λn+1a(x). (70)

Using (12) and (41)

Un(x)=x−2βDn(1/x). (71)

Now return for a moment to the one-spin expectation value. We can
write

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

〉x = Un(x)

Un(x)+Dn(x)
. (72)
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For x =1 it immediately follows from (71) that

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

〉x=1 = 1
2
, (73)

as already shown by (47). Note also that (62), for one spin at x = 0, fol-
lows from equation (61) which we rewrite as

Un(0)=
(

1
2
(λn+1 −λ)+1

)
a(0), (74)

and similarly

Dn(0)=
(

1
2
(λn+1 +λ)−1

)
a(0). (75)

Now return to equation (67) for r →∞. First we rewrite it as

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
r

〉x = Un(x)|A0(A0 +A1)
r

λn+r+2a(x)

=
∑

Un(
ax+b
cx+d

)(cx +d)−2β

λn+r+2a(x)
, (76)

where the sum has 2r terms, and a, b, c and d are from A0Mr =
(

a
c

b
d

)
.

Note that we start with the matrix A0 and thus ax+b
cx+d

� 1 for all x ∈ R
+
0 .

Now

Un(x)= lim
k→∞

2k+n∑
i=1

(cx +d)
−2β
i

λ(β)k
, (77)

where
(

ai

ci

bi

di

)
∈{A0(A0 +A1)

kA0(A0 +A1)
n}. Since ci, di >0 for all i, it fol-

lows that Un(x) is non-increasing with x. Thus we can write

Un(1)Zr(x)

λn+r+2a(x)
� 〈 . . .︸︷︷︸

∞
↑ . . .︸︷︷︸

n

↑ . . .︸︷︷︸
r

〉x � Un(0)Zr(x)

λn+r+2a(x)
(78)
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for all r � 0 and all x ∈ R
+
0 . In the limit r → ∞ we get, using (74) and

Un(1)=λn+1a(1)/2 (see (70) and (71))

(λ−1)
a(0, λ)

2λ
� 〈 . . .︸︷︷︸

∞
↑ . . .︸︷︷︸

n

↑ . . .︸︷︷︸
∞

〉x �
(

1+ 2−λ

λn+1

)
a(0, λ)

2λ
. (79)

Physically, since the correlation length ξ = 1
ln λ

, the n-dependence of the
upper bound in (79) is what one expects for the correlation function itself.
We have not been able to prove this, however.

Now we calculate some results at the right hand edge, i.e. for finite r,
with x =0 (the “canonical” case). When r =0 we have from (74) and (76)

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↑〉x=0 = Un(0)

λn+2a(0)
=

(
1+ 2−λ

λn+1

)
1

2λ
. (80)

Similarly

〈 . . .︸︷︷︸
∞

↓ . . .︸︷︷︸
n

↑〉x=0 = Dn(0)

λn+2a(0)
=

(
1− 2−λ

λn+1

)
1

2λ
, (81)

as well as (see (43))

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↓〉x=0 = Un(1)

λn+2a(0)
= λ−1

2λ
, (82)

and

〈 . . .︸︷︷︸
∞

↓ . . .︸︷︷︸
n

↓〉x=0 = Dn(1)

λn+2a(0)
= λ−1

2λ
. (83)

It is easy to see, for instance, that the sum of (80) and (82) is the same as
(62), and that (80) and (81) sum to (62) with r = 0. Similar checks verify
other sums of the four equations just above. Further, since the interactions
are ferromagnetic, (80) must be the largest of the three, and this is easily
verified as well (recall that 1�λ�2).

It is interesting that both (82) and (83) are completely independent of
the spin separation n, and equal to each other for β <βc. Thus a down-
spin at the right hand edge completely cancels the lack of spin symmetry
seen in (62), and does so for all β <βc. (In fact this holds for β �βc as
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well, since all spins are up in an infinite chain, so both (82) and (83) van-
ish.) We comment further on this after deriving some more general results.

The results in the paragraph above are based on our knowledge of
Un(x) and Dn(x) at the two values x =0 and x =1. It is easy to find gen-
eralizations. We need combinations of spins for which the corresponding
product of matrices A0 and A1 has b = 0, so that x = 0 is preserved, or
b = 1 and d = 1, so that x = 0 maps to x = 1. This is true for chain of A0
matrices of any length and chains starting with A1 following by a chain
of A0 matrices of any length. These two cases give us certain expectation
values with r spins on the rhs fixed:

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↑ . . .↑ . . .↑︸ ︷︷ ︸
r

〉x=0 =
(

1+ 2−λ

λn+1

)
1

2λr
(84)

and

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↓↑ . . .↑ . . .↑︸ ︷︷ ︸
r−1

〉x=0 = λ−1
2λr

. (85)

Similarly we get

〈 . . .︸︷︷︸
∞

↓ . . .︸︷︷︸
n

↑ . . .↑ . . .↑︸ ︷︷ ︸
r

〉x=0 =
(

1− 2−λ

λn+1

)
1

2λr
(86)

and

〈 . . .︸︷︷︸
∞

↓ . . .︸︷︷︸
n

↓↑ . . .↑ . . .↑︸ ︷︷ ︸
r−1

〉x=0 = λ−1
2λr

. (87)

Note that (85) and (87) generalize (82) and (83) in that they are both inde-
pendent of n and equal to each other. Thus the restoration of spin sym-
metry already seen, which holds at any temperature and for any separation
n, is also valid for any r. This seems very curious and nontrivial. Some
understanding can be gained by considering recent ideas about the mecha-
nism underlying the phase transition.(23) According to this work, the tran-
sition is due to the condensation of clusters of spins of exactly the type
on the right hand edge in (85) and (87). This is consistent with our results
here, since it shows that such clusters restore the spin symmetry which is
broken by the “hidden” up spin on the left hand edge of the chain, at least
for the particular expectation values investigated.
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Note that to calculate any of (80) - (87) for x = 1 would require
knowing the four values Un(1/2), Un(2), Dn(1/2) and Dn(2). Using (71)
accounts for two of these, in addition (70) removes one more, but one
is left with one unknown value. For general x, one has four unknown
quantities.

Finally, summing (84) and (86) or (85) and (87) gives rise to, respec-
tively,

〈 . . .︸︷︷︸
∞

↑ . . .↑ . . .↑︸ ︷︷ ︸
r

〉x=0 = 1
λr

(88)

and

〈 . . .︸︷︷︸
∞

↓↑ . . .↑ . . .↑︸ ︷︷ ︸
r−1

〉x=0 = λ−1
λr

. (89)

As one approaches the phase transition, λ→1, so that (88) goes to 1 while
(89) approaches 0. This suggests that in an infinite chain exactly at the
transition, the only state with non-zero probability has all spins up. This
would not be surprising, since the same property holds below the transi-
tion (for β >βc).

7. CONCLUSIONS

In this paper we have extended our understanding of the statistical
mechanical behavior of the Farey spin chains. Our main tool is a general-
ization of the “number theoretic” partition function studied by Knauf.(2–5)

By introducing a parameter, we are able to derive recursion relations
on the length of the spin chain (or equivalently, the level of the Farey frac-
tions). These relations are generalizations of the Lewis three-term equation
of number theory.(6,7) Using them and the behavior of the system under
spin-flip transformations, we find new results. In particular, we prove a
new and simple connection between the Ruelle–Perron–Frobenius trans-
fer operator studied by Prellberg(8–10) in a model of dynamical systems
with intermittency and our generalized partition function. This connec-
tion implies that all our models have the same free energy, independent
of the value of x. It also implies that the correlation length satisfies the
prediction of scaling theory.

In addition, we are able to calculate certain spin expectation values
for both finite and infinite spin chains. These results are the first such cal-
culations, to our knowledge. In particular, we find that the expectation
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value of certain spin clusters and an independent spin at arbitrary dis-
tance is independent of the direction of the spin, at all temperatures above
the transition. This holds even though the expectation value of the the
independent spin by itself does depend on direction. Thus, in this sense,
the spin cluster removes the spin asymmetry of the system. This behavior
appears to be related to the mechanism of the phase transition.
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